
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 14, 175-187 (1992)

A FIRE FIELD MODEL IMPLEMENTED IN A PARALLEL
COMPUTING ENVIRONMENT

C. S. IEROTHEOU AND E. R. GALEA
Centre for Numerical Modelling and Process Analysis, Thames Polytechnic, London SE18 6PF, U.K

SUMMARY
This paper describes the implementation of a fire field model in the parallel computing environment offered
by multiple transputers. The fire model is built into the general purpose SIMPLE-based CFD code
HARWELL-FLOW3D. The technique of domain decomposition has been applied to convert the conven-
tional serial version of FLOW3D into a code capable of efficiently utilizing an arbitrary number of
transputers. Fire simulations consisting of up to 24 OOO computational cells are performed on parallel
systems with up to 15 processors. The run time for this simulation has been reduced from over 4 days on a
single processor to just over 8 h on the 15-processor system. An interactive graphics system has also been
developed which runs in parallel with the main computations.

KEY WORDS Parallel computing Transputer CFD Fire simulation

1. INTRODUCTION

The mathematical simulation of fire is an extremely demanding application of computational fluid
dynamics (CFD). In its simplest form the fire field modell involves the simulation of transient,
three-dimensional, turbulent, buoyant flows. These simulations have the capability to predict the
spread of fire hazards such as heat and smoke within an enclosure subjected to fire. Successful
applications of this technology include aircraft cabin,’ sports ~ t a d i u m , ~ hospital ward,4 airport
terminal5 and underground station6 fires.

These models potentially have great utility in assessing the design of inhabited enclosures for
safety and in the training of fire-fighting personnel. However, the single most important factor
which mitigates against the widespread exploitation of this technology is the CPU and associated
elapsed times required to simulate a specific scenario. For example, the simulation of one typical
scenario involving a small 57 kW fire burning in a Boeing 737 fuselage currently requires about
64 h on a VAX-like minicomputer with a 0.6 Mflops proce~sor .~ This case contained a finite
volume grid consisting of 21 000 cells and suggests that in excess of 50000 cells are required to
adequately represent ‘filled’ commercial aircraft bodies.

If physical phenomena such as combustion, radiation, the generation of toxic species and the
action of water sprays are to be included, then many hundreds of hours of elapsed time will be
expended by each simulation. For example, a two-phase transient fire-sprinkler simulation
covering the first 120 s of fire-sprinkler interaction in a simple rectangular room configuration
consisting of 2700 computational cells required 236 h.8

027 1-209 1/92/0201 75-13$06.50
0 1992 by John Wiley & Sons, Ltd.

Received December 1990
Revised April 1991

176 C. S. IEROTHEOU AND E. R. GALEA

In an attempt to reduce these excessive elapsed times, the computational community first
employed vector-processing techniques. The majority of this effort was based on CRAY and CDC
supercomputer hardware. Typically, speed-up factors between three and four have been reported
for CFD applications.’-” These superficially low speed-ups are a result of only a fraction of the
total code being efficiently vectorized vis-a-vis the linear equation solver.’’ In an attempt to gauge
the potential of vectorization, Ierotheou et d . 1 3 vectorized as much of a purpose-written CFD
code as possible. With over 90% of the code vectorized, speed-up factors range from five to 30;14
these rate amongst the best results quoted in the open literature. Clearly, even in such an ideal
situation the speed-up potential from vectorization is limited.

Parallel computing techniques applied to multiprocessor architectures now offer the potential
of reducing these considerable elapsed times to a few hours. While it is possible to solve
computationally intensive problems using supercomputers, this approach is limited and perceived
to be prohibitively expensive for the majority of routine industrial applications.

The Inmos transputert5 offers an efficient and relatively inexpensive route to achieving this
goal. The transputer is a 32 bit RISC microprocessor with 4 Kb of on-chip memory and can access
from 1 Mb to 2 Gb of off-chip memory. The T800 series transputer is available with 20 or 25 MHz
clock rates. Each transputer has four 20 Mbitss-’ communication links which enable it to be
linked with up to four other transputers. Using the parallel FORTRAN compiler of 3L Ltd.,16 the
20 Mhz T800 has a realizable performance of 0.4 Mflops. It is possible to accommodate within a
personal computer tower case up to 15 transputers with 56 Mb of memory.

In this paper we discuss the mapping of the general-purpose commercial fluid flow code
HARWELL-FLOW3D1 onto a distributed memory multitransputer architecture and its
application to transient, three-dimensional fire simulations. The mapping technique adopted here
is that of domain decomposition. While the technique has been applied to the FLOW3D code, it is
general and can be equally applied to any other structured control-volume-based code.
Furthermore, the technique is not restricted to the transputer and can be applied to any similar
parallel computing platform.

Cross et d.’* explored the extent to which the technique could be applied to control-volume-
based, three-dimensional, transient solidification-by-conduction problems. Recent applications of
this work’’ reveal that efficiencies of 95% can be achieved, resulting in a 17-fold speed-up on an
18-transputer system.

Johnson and Cross” later applied the technique to the HARWELL-FLOW3D code. They
examined the effectiveness of the mapping on steady state, incompressible, laminar flows. A
number of tests were performed, ranging from problems consisting of 40oO to 40000 com-
putational cells and from one to 50 transputers. They reported efficiencies from 60% to 85%. The
general trends suggest that larger problems are more efficient with respect to speed-up than
smaller ones. In an attempt to maximize efficiencies, various combinations of solvers were
examined. Their findings were highly problem-dependent.

Here the FLOW3D code is applied to a difficult practical problem and the domain
decomposition technique is extended to include transient, compressible, buoyant and turbulent
flows.

In addition to enhanced computational performance, the multiprocessor approach allows
greater flexibility in the design of the CFD environment. Since all the computations are performed
on the transputers, this leaves the host processor free to be engaged in other tasks. This has been
exploited by utilizing the host processor to produce interactive graphics without interfering with
the progress of computations. This allows the user to keep a detailed check on the computations
and, if necessary, alter the convergence path.

FIRE FIELD MODEL IN PARALLEL COMPUTING

f

Host L Master r Slave 1

177

-
islave 2 r Slave n

2. HARWELL-FLOW3D-AN OVERVIEW

The HARWELL-FLOW3D programme was developed by AEA Technology in the mid- 1980s.
The software was written to model complex three-dimensional fluid flow problems and uses the
control volume approach to discretize the domain. All velocity components are stored at the
control volume centres using the non-staggered method of Rhie and Chow.21 The means by which
the resulting coupled equations are solved is based on the SIMPLE solution procedure and its
derivatives.22, 2 3

Traditionally, CFD problems are compute-intensive and therefore FLOW3D was developed
on a CRAY supercomputer to exploit the vector-processing features present.

The code can tackle problems consisting of one-, two- or three-dimensional geometries with
either regular or body-fitted grids. The simulations can be either steady-state or transient, involve
laminar or turbulent flows (k-E model) and can also include the solution of scalars, combustion
and radiation. There is also a selection of linear equation algorithms to choose from, such as
preconditioned conjugate gradient (PCG) methods, a line relaxation algorithm (LSOR) and
Stone's strongly implicit procedure (SIP).

FLOW3D was written using FORTRAN 77. The multiple-transputer version is also a totally
FORTRAN code. The FORTRAN used was authored by 3L Ltd. and is a FORTRAN 77
standard with extensions for communications.

3. THE HARDWARE

The host hardware used in this work consisted of a 3861387 AT with VGA graphics and monitor.
Located within the AT case were two motherboards populated with a total of 15 transputer
modules (TRAMS). Each TRAM consists of a T800-20 transputer with either 2 or 8 Mb of off-chip
memory.

A single TRAM had 8 MB of off-chip memory and this will be referred to as the master
processing element (PE). The remaining 14 TRAMS had only 2 MB of off-chip memory and will
be referred to as the slave PEs. The PEs were arranged in a pipeline with the master at the head as
shown in Figure 1.

4. THE PARALLEL IMPLEMENTATION

In deciding on a suitable local memory parallelization strategy, many factors need to be taken into
consideration.

One important factor concerns the efficient exploitation of the available raw compute power.
Experience within the CFD community on the use of vector processors for compute-intensive
simulations has demonstrated that although high efficiencies are possible, they are not easily
attainable. For multiple-processor systems this issue is equally relevant.

PE 1 PE 2 PE 3 PE n*l

Figure 1. Simple pipeline configuration of PEs showing nearest-neighbour connectivity

178 C. S. IEROTHEOU AND E. R. GALEA

If the use of multiple-processor systems is to be successful, then it is essential to keep overheads
to a minimum. These can involve data communication between processors or the necessity to
perform extra computations. In addition, full use must be made of the PEs local memory so that
there is as high a computation-to-communication ratio as possible.

Finally, in order to maintain the original code flexibility, the multiple-processor version must be
general enough to permit execution on an arbitrary number of PEs. Furthermore, with the
exception of specifying how many PEs are to be used, the appearance of the serial and parallel
implementations must be identical.

Structured control-volume-based CFD codes exhibit natural data parallelism. This is exploited
here by employing a strategy based on the systematic partitioning of the computational domain.
In the control volume approach the information required for a given cell is based solely on the
neighbouring cells; thus there are three natural partitioning strategies.

The first is based on blocks of cells, where the domain is subdivided into blocks of n x rn cells and
each block is assigned to a corresponding PE. This approach does not allow for nearest-neighbour
communications, since the TRAM has only four links and is therefore inefficient. The second is
based on lines of cells where each line covers a complete dimension. Nearest-neighbour
communications are possible if the PEs are set up in a two-dimensional grid topology. The final
approach is based on a slab of cells. For this decomposition, nearest-neighbour communications
can be minimized when mapped onto a pipeline topology (Figure 2). While the two-dimensional
grid topology has a smaller communications overhead, the slab-partitioning approach requires
less restructuring of the code. From the point of view of maintaining load balancing, the two-
dimensional grid topology is more restrictive, since load balancing must now be performed in two
dimensions. Also, as more PEs are added to the grid, it may become necessary to alter the entire
distribution of PEs, thus altering the efficiency characteristics. Therefore, as a first step, the slab-
partitioning approach was used in this study. A slab is defined as covering the entire xy-plane for a
particular z-position. The data transfers between PEs consist of all xy-slab values represented at
the PE overlap areas.

The success of this approach depends on the even balancing of the computational effort
amongst the PEs. Inefficiencies will result if some of the PEs remain idle during part of the

PROBLEM DOMAIN
I

Figure 2. Partioning of problem domain over four PEs (shaded areas showing overlapped region)

FIRE FIELD MODEL IN PARALLEL COMPUTING 179

computation phase. Since the computation time per cell is roughly constant, PEs will be left idle if
the numbers of cells per PE are not identical. In some cases these idle times can be excessive.

In the pipeline topology each PE has its own copy of the FLOW3D executable. Each PE is
responsible for the computation of cell information in its assigned area of the domain. When
necessary, data are transferred between neighbouring PEs. This is done in order to preserve as far
as possible the data dependences present in the original scalar code. The major differences between
the FLOW3D executables on the PEs lie in array declarations (which include the overlapped
regions) and ‘DO loop’ ranges which are set to cover the nodes assigned to a given PE.

The FLOW3D code has a variety of different linear equation solvers used to solve the
discretized equations. These need to be rewritten to exploit the current parallel architecture.
Attention is focused on three solvers: the PCG methods, LSOR and SIP.

The PCG methods are largely explicit in nature; as a result there is minimal data transfer
between PEs. The SIP algorithm is an example of an implicit solver and involves recurrences in the
forward elimination and back-substitution stages. By re-ordering the indices over which the cells
are updated, the algorithm can be made to perform in a pipeline fashion. This introduces an
overhead in the form of a start-up time. The SIP and PCG algorithms have similar convergence
properties in both their serial and parallel implementations. The LSOR algorithm uses the latest
cell approximations and can be made to perform in a similar way in parallel. Unfortunately, large
idle times are introduced while the necessary data values are computed on other PEs. An
alternative is to use a ‘local’ PE LSOR algorithm. The LSOR algorithm uses updated values as
they become available from assigned cells but uses old approximations for the overalapped cells.
The latter effect causes an increase in the total number of iterations needed to achieve the same
level of convergence.

It was also necessary to introduce the evaluation of global scalar numbers. An example is the
maximum residual required during a solution process. This was determined in two stages. Firstly,
local evaluation of the scalar was carried out and all such numbers were then transferred up the
pipeline to the master PE. In the second stage the scalar is determined for the whole data set and, if
necessary, transferred back down the pipeline to all the slave PEs.

Other alterations to the original code are mainly in the form of data exchanges of overlapped
areas between neighbouring PEs. The exchanges are performed whenever there is an update of the
overlapped areas.

In this paper we discuss the performance of this code on up to 15 PEs. However, the code has
been developed for operation with an arbitrary number of PEs.

Since all computations are performed on the PEs, the host processor remains idle for a large
portion of the total time. It can be put to good use by performing other tasks which will aid the
CFD modeller. In the current implementation, for example, an interactive graphical display has
been included. This is updated in parallel with the transputer calculations of the simulation,
incurring only a small overhead in the process.

The graphical tasks are not intended to be used for post-processing, but rather as a monitoring
tool of the simulation. They allow a detailed interrogation of the flow field together with other
related parameters. Some of the features currently provided in the 386 version include contour
plots of a selected variable, e.g. pressure, temperature, etc., and vector plots of a given two-
dimensional plane. For the purposes of monitoring convergence behaviour, there are graphs of
mass residual and monitoring variables of a given control volume. In addition, relaxation
parameters can be changed to modify the convergence behaviour. The direction of view and the
selected two-dimensional plane can also be changed during the simulation. It is intended that this
facility will be extended to include interactive modifications to boundary conditions and internally
defined regions such as heat sources.

180 C. S. IEROTHEOU AND E. R. GALEA

5. THE PHYSICAL PROBLEM

The test case considered here is an enclosure fire. The fire compartment represents a closed office
of dimensions 2.97 x 2.97 x 600 m3. Following accepted practices for the modelling of non-
spreading fires,'-* the fire-meant to simulate a small heater or the early stages of a waste paper
fire-was modelled as a volumetric heat source. It was centrally located on the floor at the back
wall. For the purposes of this test case combustion was ignored. The heat source had dimensions
of 054 x 0 2 7 x 0.4 m3 and a constant power output of 6 kW. The simulation was concerned with
predicting the evolution of the office environment over the first 60 s.

This simulation is not intended to represent state-of-the-art fire field modelling. Rather, it
demonstrates the advantages in using a multitransputer environment to perform the calculations
necessary to simulate complex fire scenarios.

6. THE MATHEMATICAL PROBLEM

The starting point of the analysis is the set of three-dimensional, partial differential equations that
govern the phenomena of interest here. This set consists in general of the following equations: the
continuity equation; the three momentum equations that govern the conservation of momentum
per unit mass in each of the three space directions (the Navier-Stokes equations); the equation for
conservation of energy; and the equations for a turbulence model, in this case the k--E model. The
precise formulations of the differential equations describing the model will not be presented here
since they may be found however, we shall consider them in their general vector
form.

All the equations can be expressed in a general formz6 as follows.

The continuity equation

The conservation of mass is expressed as

aP
at
-+ div(p V) = S.

The general @-equation

The general source balance equation for @ is

a
- (p @) + div(pV0 - rggrad@) = Sg .

at 7 r 1 t I
transient convection diffusion source

Equations for the various quantities (e.g. velocity components, energy, pressure, etc.) differ
primarily in the way in which the terms r and Sg are connected with other variables. They are
derived from equation (2) simply by replacing 0, r and Sg with the appropriate expressions.

The boundary conditions

The initial temperature within the room was set to 24 "C. For all walls of the compartment the
no-slip condition was used for velocities and both isothermal (at 24 "C) and adiabatic conditions
for temperature. The usual 'wall function^'^' were used to compute shear stresses and heat fluxes
at the walls.

FIRE FIELD MODEL IN PARALLEL COMPUTING 181

7. THE NUMERICAL EXPERIMENTS

The volume of the fire enclosure was discretized using a Cartesian framework. For convenience
the grid spacing was uniform in each space direction. A series of grids were employed ranging from
10 x 10 x 15 (1500 cells) through 10 x 20 x 30, 20 x 10 x 30 and 20 x 20 x 15 (6000 cells) up to
20 x 20 x 30 (12 O00 cells). These grids were selected for convenience, since this allowed the model
to be implemented comfortably on five TRAMS. A further grid consisting of 20 x 20 x 60 (24 OOO)
cells was also used; the execution of this problem was restricted to 15 TRAMS.

The number of sweeps used within a given time step was set to a maximum of 25. Tests revealed
that setting this number to 50 had very little effect on the overall solution. Convergence is assumed
within a given time step if either the maximum number of sweeps is reached or the mass source
residual falls below 1 x low4. It is worth noting here that converged solutions obtained from the
serial and parallel codes display no significant differences. The hybrid differencing scheme is used
throughout and the Stone method is used to solve the momentum and enthalpy equations. The
pressure correction equation was solved using the ICCG method and the turbulence quantities
were solved using the LSOR method. This corresponds to the default selection of solvers as
recommended by the FLOW3D developers. Experience has shown these solvers to be efficient and
robust for most applications. They were not selected on the basis of demonstrating peak
efficiencies in parallel. The fully implicit backward differencing scheme was used for the
discretization of time. Finally, the simulation was run for a total of 60 time steps, where each time
step represented 1 s.

8. RESULTS AND DISCUSSION

Before discussing the findings of the numerical experiments, it is appropriate to briefly discuss the
evolution of the room environment as predicted by the numerical model. The heat source creates a
buoyancy-driven flow with large-scale turbulent motion which controls the diffusion of
momentum. The non-uniform buoyancy forces not only drive this flow but also increase the
turbulent mixing in the rising plume and inhibit it in hot stratified layers.

Within 5 s the rising plume above the heat source impinges on the ceiling, creating a jet of hot
gases which travels along the length of the room. This results in vigorous turbulent and a
thickening of the hot layer. In order to feed the rising thermal plume, the heat source entrains
cooler ambient air at floor level. As a result a large recirculation current is set up within the room.
Within 25 s the ceiling jet encounters the far wall. As the simulation progresses, the hot ceiling
layer thickens and there is a further increase in temperature. After 60 s a multilayered thermal
stratification has developed within the room (Figure 3).

Results from the numerical experiments concerning run times, speed-ups and efficiencies are
summarized in Table I. Run times refer to the elapsed wall clock time required to perform the
simulation calculations. Initial set-up and screen 1/0 times, while small in relation to the time
involved in performing the calculations, are not included in these figures. In all but the 24 000-cell
case, quoted speed-ups refer to the ratio of run times on a single PE to the respective multiple-PE
case. For the purposes of comparing the serial and parallel FLOW3D implementations, the serial
times quoted refer to the performance of the solvers in their original form. The simulation
involving 24 OOO cells could not be performed on a single PE because of memory limitations. In
this case the run time was estimated to be simply twice the time required to perform the 12 000-cell
simulation on a single PE. In this way the quoted speed-up represents a minimum expected value.
The efficiency is simply a percentage expression which represents the speed-up ratio divided by the
number of PEs implemented.

182 C. S. IEROTHEOU AND E. R. GALEA

.

-: 0.37 w s .

x

L z

x

L
Figure 3. Vertical centre plane depicting velocity vectors and temperature (K) contours after 60 s

Figures 4 and 5 depict speed-up and wall-clock timesrfor the 12 000-cell (20 x 20 x 30 geometry)
simulation utilizing up to 15 PEs. Also indicated in Figure 4 (dotted line) is the ideal linear speed-
up curve. It is clear from this figure that as the number of PEs involved in the solution procedure
increases while the number of cells remains constant, the efficiency of the system deteriorates. This
is primarily due to a reduction in the proportion of computation to communication times. As
more PEs are utilized, the time spent by each in performing the calculations is reduced while the
time spent on communications remains constant. In addition, the parallel LSOR algorithm incurs
a penalty in the form of an increase in the total number of iterations needed to achieve
convergence. This is likely to become significant as additional PEs are included.

FIRE FIELD MODEL IN PARALLEL COMPUTING 183

Table I. Results of fire simulation numerical experiments performed on
multiple transputers

Number Wall clock Efficiency
Grid size of PEs time (h) Speed-up (%)

1

5

1

5

1

5

1

5

1

5

10

15

1

15

4.13

1.34

18.94

5.64

18.76

5.44

19.32

6.06

49.22

11.61

6.22

4.42

98.43*

8.3 1

- -

3.1 62

- -

3.36 67

- -

3.45 69

- -

3-19 64

- -

4.24 85

7.91 79

11.14 14

- -

1 1 k * 79*

*Indicates minimum estimate.

Despite these difficulties, speed-up factors range from 4.3 on five PEs (85% efficiency) to 11.1 on
15 PEs (74% efficiency). In terms of run times, this means that the 12 000-node fire simulation
which requires in excess of 49 h to complete on a single PE can be performed in under 4.5 h using
15 PEs (see Figure 5).

The efficiency obtained from a particular PE array is dependent on the number of com-
putational cells involved in the simulation. Figure 6 shows that a five-PE system can deliver
efficiencies varying from 62% (3.1 speed-up) through 69% (3.45 speed-up) up to 85% (4.3 speed-
up) by changing the problem size from 1500 through 6000 to 12 000 cells respectively. On doubling
the number of cells to 24 OOO (20 x 20 x 60), the efficiency of the 15-PE system increases from 74%
to an estimated minimum of 79%. Therefore, to achieve the maximum practical efficiency, it is
essential to solve the largest problem that can be accommodated within the P E s memory.

184

12

10

8 -

6 -

4 -

2 -

C. S. IEROTHEOU AND E. R. GALEA

-

-

Speed-u P

14

I 1 I 1 1 1 1 I

16
0 '

0 2 4 6 8 lo 12 14
Number of transputers

Figure 4. Speed-up factors for 20 x 20 x 30 problem utilizing up to 15 transputers (ideal speed-up shown as dotted line)

CPU time (hours)

50 -

40 -

30 -

20 -

10 -

1
O > I I I 1 I I I

0 2 4 e 8 lo 11 14 16
N urn ber of transputers

0' I
I I 1 I I 1 I

0 2 4 e 8 lo 11 14 16
N urn ber of transputers

Figure 5. Wall clock times for 20 x 20 x 30 grid utilizing up to 15 transputers

These results suggest that while keeping the problem size fixed, a point will eventually be
reached where no further gain may be expected by adding additional PEs. However, the onset of
this cut-off point can be forestalled by increasing the problem size.

It is also apparent that for a given problem size the efficiency is dependent on the manner
in which the cells are distributed within the solution domain. This is illustrated by the solution
of the 6000-cell problem using five PEs. Three cell distributions were considered, 10 x 20 x 30,
20x 10x30 and 2 0 x 2 0 ~ 1 5 , resulting in efficiencies of 67%, 69% and 64% respectively.

FIRE FIELD MODEL IN PARALLEL COMPUTING

120

100

80

60

40

20

0

185

h

- - - \ e---
- - - - - 1 1

n - t..

_ . .

_..

I 1 I I I I 1 I 1 1 1 1 I _

lb DIFFERENCE FROM 20 x 10 x 30 CASE
12 I

.

...

.

.

SERIAL PARALLEL SERIAL PARALLEL

rza 10 x 20 x 90 rn 20 x 20 x 16

Figure 7. Differences in CPU time between various distributions of 6000 cells

Table I reveals that the 20 x 10 x 30 configuration proved to be the fastest in both serial and
parallel cases. The 20 x 20 x 15 case is the most inefficient, with the parallel and serial implementa-
tions running 11.2% and 3.1% slower than their respective fastest counterparts (Figure 7).

However, there was little difference between the 20 x 10 x 30 and the 10 x 20 x 30 cases, less than
1% in scalar and 3.5% in parallel (Figure 7). The relatively small difference between these parallel
cases is expected, because the primary overhead in each case-that of data transfers between
PEs-is identical, since the number of cells in the xy-slabs are the same. This also means that the
same number of calculations per xy-slab are performed, resulting in similar computation times for
both parallel and scalar comparisons.

186 C. S. IEROTHEOU AND E. R. GALEA

The marked differences observed between the 20 x 10 x 30 and 20 x 20 x 15 configurations can
be explained in a similar manner. For the parallel case the data transfers between PEs are not
identical. The first configuration involves 20 x 10 data elements while the second involves 20 x 20.
Hence there is a greater communication overhead associated with the 20 x 20 x 15 case. This is
coupled with the fact that algorithms which solve in an xy-slab fashion will work more effectively
on a 20 x 10 rather than a 20 x 20 slab.

9. FUTURE DEVELOPMENTS

The development of the transputer (and parallel FORTRAN) has released the power of
inexpensive parallel computing to computationally demanding applications such as fire simu-
lations. Ironically, it is also the transputer which is limiting its further development. Delivering
only 0.4 Mflops, hundreds of T800-20 transputers are required to achieve ‘supercomputer’
performance. For example, the 64 h aircraft cabin fire simulation would require 112 trasnputers
(working at 80% efficiency) in order to complete the simulation in 1 h. However, if each PE could
achieve 10 Mflops, only five would be required.

This performance level is currently being pursued with a new-generation TRAM which
incorporates both a T800 transputer and an Intel i860 microprocessor. The i860, capable of
performing vector operations, has a peak performance of 80Mflops. The T800 is used for
communication purposes while the i860 performs the compute-intensive calculations. Use of the
i860 will mean that, with the exception of inserting vector calls, minimum alterations to the
parallel version of FLOW3D will be necessary. Our early experiences with the i860 reveal that the
20 x 20 x 30 case when run on a single i860 required under 3.6 h. of processing. This compares with
a time of 4.42 h when run on 15 transputers in parallel.

The next-generation transputer-known as the T9000 and due for release in 1991-also offers
the possibility of enhanced performance. This is expected to be of the order of a 10-fold
improvement in processing speed and communication rates.

10. CONCLUSIONS

The pipeline TRAM architecture allows for the efficient solution of ‘large’ CFD problems. In order
to achieve maximum performance from a given array of PEs, it is essential that they be configured
with sufficient memory to allow the solution of massive problems involving hundreds of
thousands of computational cells. The memory issue becomes critical when simulating two-phase
phenomena such as fire-sprinkler interaction. These compute-intensive simulations involve
nearly twice as many variables and hence will involve twice as much memory. In addition, it is
desirable to orientate the geometry of the problem such that the direction containing the
maximum number of cells is conicident with the partition direction. This must be coupled with a
good balance of computation amongst PEs to achieve maximum efficiency.

On fire field models the technique has achieved efficiencies of 85%. Performed on a 15-PE
system, run times for fire simulations involving transient, three-dimensional, turbulent, buoyant
flows on a mesh of 24 000 computational cells have been reduced from more than 4 days to 8 h. It
is expected that parallel/vector PEs will aid this development further.

ACKNOWLEDGEMENTS

The authors are indebted to AEA Technology Harwell for making available the source code of
FLOW3D and to the U.K. Civil Aviation Authority and the SERC for funding. They also wish to
acknowledge the contributions of Stephen Johnson, Mark Cross and Peter Chow.

FIRE FIELD MODEL IN PARALLEL COMPUTING 187

REFERENCES

1. E. R. Galea, ‘On the field modelling approach to the simulation ofenclosure fires’, J . Fire Protect. Eng., 1,ll-22 (1989).
2. E. R. Galea and N. C. Markatos, ‘Modelling of aircraft cabin fires’, Fire Safety Science Proc. 2nd f n f . Symp.,

Hemisphere, Washington DC, 1989, pp. 801-810.
3. K. A. Pericleous, D. R. E. Worthington and G. Cox, ‘The field modelling of fire in an air-supported structure’, 2nd fnt.

Symp. on Fire Safety Science, Tokyo, Hemisphere, Washington DC, January 1988, pp. 871-880.
4. S. Kumar, N. Hoffmann and G. Cox, ‘Some validation of Jasmine for fires in hospital wards’, in Numerical Simulation

of Fluid Flow and HeatlMass Transfer Processes, Springer, Berlin, 1986, p. 159.
5. R. Waters, ‘Air and smoke movement within a large enclosure’, in Numerical Simulation of Fluid Flow and HeatlMass

Transfer Process, Springer, Berlin, 1986, pp. 135-147.
6. S. Simcox, N. S. Wilkes and I. P. Jones, ‘Fire at Kings Cross Underground Station, 18th November 1987; numerical

simulation of the buoyant flow and heat transfer’, U.K. Atomic Energy Aufhoriry Harwell Report AERE-G 4677,1988.
7. E. R. Galea and N. C. Markatos, ‘The modelling and computer simulation of fire development in aircraft’, Int. J . Heat

Mass Transfer, 34, 181-197 (1991).
8. N. A. Hoffmann, E. R. Galea and N. C. Markatos, ‘Transient Two-phase fire-sprinkler simulation’, IASTED Int. Conf:

on Modeling, Sirnulation and Optimisation, Montreal, May 1990.
9. J. R. Kightley and I. P. Jones, ‘A comparison of conjugate gradient preconditionings for three-dimensional problems

on a CRAY-1’, Comput. Phys. Commun., 37, 205-214 (1985).
10. J. R. Kightley and C. P. Thompson, ‘On the performance of some rapid elliptic solvers on a vector processor’, SIAM J .

Sci. Stat. Comput., 8, 701-714 (1987).
11. H. A. Van der Vorst, ‘The performance of FORTRAN implementations for preconditioned conjugate gradients on

vector computers’, Parallel Comput., 3,49-58 (1986).
12. C. S. Ierotheou, C. W. Richards and M. Cross, ‘Vectorization of the SIMPLE solution procedure for CFD problems-

Part I: A basic assessment’, Appl. Math. Modell., 13, 524-529 (1989).
13. C. S. Ierotheou, C. W. Richards and M. Cross, ‘Vectorization of the SIMPLE solution procedure for CFD problems-

Part 11: The impact of using a multigrid method’, Appl. Math. Modell., 13, 530-536 (1989).
14. C. S. Ierotheou, ‘The simulation of fluid flow processes using vector processors’, Ph.D. Thesis, Thames Polytechnic,

London, 1990.
15. IMS T800 Architecture. Technical Note 6, Inmos Ltd., Bristol, January 1988.
16. Parallel FORTRAN User Guide, 3L Ltd., Livingstone, 1990.
17. A. D. Burns and N. S. Wilkes, ‘A finite-difference method for the computation of fluid flows in complex three

18. M. Cross, S. Johnson and P. Chow, ‘Mapping enthalpy-based solidification algorithms onto vector and parallel

19. S. Johnson, M. Cross and P. Leggett, ‘Casting simulation on highly parallel computer architectures’, Proc. Int. Conf: on

20. S. Johnson and M. Cross, ‘Mapping CFD algorithm onto fine grained parallel architecture’, Appl. Math. Modell.,

21. C. M. Rhie and W. L. Chow, ‘Numerical study ofthe turbulent flow past an airfoil with trailing edge separation’, AIAA

22. J. P, Van Doormaal and G. D. Raithby, ‘Enhancements of the SIMPLE method for predicting incompressible fluid

23. R. A. Issa, ‘Solution of the implicitly discretised fluid flow equations by operator-splitting’, J. Comput. Phys., 62,4(M5

24. N. C. Markatos, M. R. Malin and G. Cox, ‘Mathematical modelling of buoyancy induced smoke in enclosures’, Int. J .

25. N. A. Hoffmann, ‘Computer simulation of fire-sprinkler interaction’, Ph.D. Thesis, Thames Polytechnic, London, 1990.
26. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
27. S. V. Patankar and D. B. Spalding, ‘A calculation procedure for heat, mass and momentum transfer in three-

dimensional geometries’, U.K. Atomic Energy Authority Hanvell Report AERE-R 12342, 1987.

architectures’, Appl. Math. Modell., 13, 702-709 (1989).

Modelling of Casting, Welding and Advanced SolidiJcation Processes, Davos, September 1990.

in press.

J., 21, 1525-1532 (1983).

flows’, Numer. Heat Transfer, 7 , 147-163 (1984).

(1985).

Heat Mass Transfer, 25, 63-75 (1982).

dimensional parabolic flows’, Znt. J . Heat Mass Transfer, 15, 1787-1806 (1972).

