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SUMMARY 
This paper describes the implementation of a fire field model in the parallel computing environment offered 
by multiple transputers. The fire model is built into the general purpose SIMPLE-based CFD code 
HARWELL-FLOW3D. The technique of domain decomposition has been applied to convert the conven- 
tional serial version of FLOW3D into a code capable of efficiently utilizing an arbitrary number of 
transputers. Fire simulations consisting of up to 24 OOO computational cells are performed on parallel 
systems with up to 15 processors. The run time for this simulation has been reduced from over 4 days on a 
single processor to just over 8 h on the 15-processor system. An interactive graphics system has also been 
developed which runs in parallel with the main computations. 
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1. INTRODUCTION 

The mathematical simulation of fire is an extremely demanding application of computational fluid 
dynamics (CFD). In its simplest form the fire field modell involves the simulation of transient, 
three-dimensional, turbulent, buoyant flows. These simulations have the capability to predict the 
spread of fire hazards such as heat and smoke within an enclosure subjected to fire. Successful 
applications of this technology include aircraft cabin,’ sports ~ t a d i u m , ~  hospital ward,4 airport 
terminal5 and underground station6 fires. 

These models potentially have great utility in assessing the design of inhabited enclosures for 
safety and in the training of fire-fighting personnel. However, the single most important factor 
which mitigates against the widespread exploitation of this technology is the CPU and associated 
elapsed times required to simulate a specific scenario. For example, the simulation of one typical 
scenario involving a small 57 kW fire burning in a Boeing 737 fuselage currently requires about 
64 h on a VAX-like minicomputer with a 0.6 Mflops proce~sor .~ This case contained a finite 
volume grid consisting of 21 000 cells and suggests that in excess of 50000 cells are required to 
adequately represent ‘filled’ commercial aircraft bodies. 

If physical phenomena such as combustion, radiation, the generation of toxic species and the 
action of water sprays are to be included, then many hundreds of hours of elapsed time will be 
expended by each simulation. For example, a two-phase transient fire-sprinkler simulation 
covering the first 120 s of fire-sprinkler interaction in a simple rectangular room configuration 
consisting of 2700 computational cells required 236 h.8 
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In an attempt to reduce these excessive elapsed times, the computational community first 
employed vector-processing techniques. The majority of this effort was based on CRAY and CDC 
supercomputer hardware. Typically, speed-up factors between three and four have been reported 
for CFD applications.’-” These superficially low speed-ups are a result of only a fraction of the 
total code being efficiently vectorized vis-a-vis the linear equation solver.’’ In an attempt to gauge 
the potential of vectorization, Ierotheou et d . 1 3  vectorized as much of a purpose-written CFD 
code as possible. With over 90% of the code vectorized, speed-up factors range from five to 30;14 
these rate amongst the best results quoted in the open literature. Clearly, even in such an ideal 
situation the speed-up potential from vectorization is limited. 

Parallel computing techniques applied to multiprocessor architectures now offer the potential 
of reducing these considerable elapsed times to a few hours. While it is possible to solve 
computationally intensive problems using supercomputers, this approach is limited and perceived 
to be prohibitively expensive for the majority of routine industrial applications. 

The Inmos transputert5 offers an efficient and relatively inexpensive route to achieving this 
goal. The transputer is a 32 bit RISC microprocessor with 4 Kb of on-chip memory and can access 
from 1 Mb to 2 Gb of off-chip memory. The T800 series transputer is available with 20 or 25 MHz 
clock rates. Each transputer has four 20 Mbitss-’ communication links which enable it to be 
linked with up to four other transputers. Using the parallel FORTRAN compiler of 3L Ltd.,16 the 
20 Mhz T800 has a realizable performance of 0.4 Mflops. It is possible to accommodate within a 
personal computer tower case up to 15 transputers with 56 Mb of memory. 

In this paper we discuss the mapping of the general-purpose commercial fluid flow code 
HARWELL-FLOW3D1 onto a distributed memory multitransputer architecture and its 
application to transient, three-dimensional fire simulations. The mapping technique adopted here 
is that of domain decomposition. While the technique has been applied to the FLOW3D code, it is 
general and can be equally applied to any other structured control-volume-based code. 
Furthermore, the technique is not restricted to the transputer and can be applied to any similar 
parallel computing platform. 

Cross et d.’* explored the extent to which the technique could be applied to control-volume- 
based, three-dimensional, transient solidification-by-conduction problems. Recent applications of 
this work’’ reveal that efficiencies of 95% can be achieved, resulting in a 17-fold speed-up on an 
18-transputer system. 

Johnson and Cross” later applied the technique to the HARWELL-FLOW3D code. They 
examined the effectiveness of the mapping on steady state, incompressible, laminar flows. A 
number of tests were performed, ranging from problems consisting of 40oO to 40000 com- 
putational cells and from one to 50 transputers. They reported efficiencies from 60% to 85%. The 
general trends suggest that larger problems are more efficient with respect to speed-up than 
smaller ones. In an attempt to maximize efficiencies, various combinations of solvers were 
examined. Their findings were highly problem-dependent. 

Here the FLOW3D code is applied to a difficult practical problem and the domain 
decomposition technique is extended to include transient, compressible, buoyant and turbulent 
flows. 

In addition to enhanced computational performance, the multiprocessor approach allows 
greater flexibility in the design of the CFD environment. Since all the computations are performed 
on the transputers, this leaves the host processor free to be engaged in other tasks. This has been 
exploited by utilizing the host processor to produce interactive graphics without interfering with 
the progress of computations. This allows the user to keep a detailed check on the computations 
and, if necessary, alter the convergence path. 
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2. HARWELL-FLOW3D-AN OVERVIEW 

The HARWELL-FLOW3D programme was developed by AEA Technology in the mid- 1980s. 
The software was written to model complex three-dimensional fluid flow problems and uses the 
control volume approach to discretize the domain. All velocity components are stored at the 
control volume centres using the non-staggered method of Rhie and Chow.21 The means by which 
the resulting coupled equations are solved is based on the SIMPLE solution procedure and its 
derivatives.22, 2 3  

Traditionally, CFD problems are compute-intensive and therefore FLOW3D was developed 
on a CRAY supercomputer to exploit the vector-processing features present. 

The code can tackle problems consisting of one-, two- or three-dimensional geometries with 
either regular or body-fitted grids. The simulations can be either steady-state or transient, involve 
laminar or turbulent flows (k-E model) and can also include the solution of scalars, combustion 
and radiation. There is also a selection of linear equation algorithms to choose from, such as 
preconditioned conjugate gradient (PCG) methods, a line relaxation algorithm (LSOR) and 
Stone's strongly implicit procedure (SIP). 

FLOW3D was written using FORTRAN 77. The multiple-transputer version is also a totally 
FORTRAN code. The FORTRAN used was authored by 3L Ltd. and is a FORTRAN 77 
standard with extensions for communications. 

3. THE HARDWARE 

The host hardware used in this work consisted of a 3861387 AT with VGA graphics and monitor. 
Located within the AT case were two motherboards populated with a total of 15 transputer 
modules (TRAMS). Each TRAM consists of a T800-20 transputer with either 2 or 8 Mb of off-chip 
memory. 

A single TRAM had 8 MB of off-chip memory and this will be referred to as the master 
processing element (PE). The remaining 14 TRAMS had only 2 MB of off-chip memory and will 
be referred to as the slave PEs. The PEs were arranged in a pipeline with the master at the head as 
shown in Figure 1. 

4. THE PARALLEL IMPLEMENTATION 

In deciding on a suitable local memory parallelization strategy, many factors need to be taken into 
consideration. 

One important factor concerns the efficient exploitation of the available raw compute power. 
Experience within the CFD community on the use of vector processors for compute-intensive 
simulations has demonstrated that although high efficiencies are possible, they are not easily 
attainable. For multiple-processor systems this issue is equally relevant. 

PE 1 PE 2 PE 3 PE n*l 

Figure 1. Simple pipeline configuration of PEs showing nearest-neighbour connectivity 
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If the use of multiple-processor systems is to be successful, then it is essential to keep overheads 
to a minimum. These can involve data communication between processors or the necessity to 
perform extra computations. In addition, full use must be made of the PEs local memory so that 
there is as high a computation-to-communication ratio as possible. 

Finally, in order to maintain the original code flexibility, the multiple-processor version must be 
general enough to permit execution on an arbitrary number of PEs. Furthermore, with the 
exception of specifying how many PEs are to be used, the appearance of the serial and parallel 
implementations must be identical. 

Structured control-volume-based CFD codes exhibit natural data parallelism. This is exploited 
here by employing a strategy based on the systematic partitioning of the computational domain. 
In the control volume approach the information required for a given cell is based solely on the 
neighbouring cells; thus there are three natural partitioning strategies. 

The first is based on blocks of cells, where the domain is subdivided into blocks of n x rn cells and 
each block is assigned to a corresponding PE. This approach does not allow for nearest-neighbour 
communications, since the TRAM has only four links and is therefore inefficient. The second is 
based on lines of cells where each line covers a complete dimension. Nearest-neighbour 
communications are possible if the PEs are set up in a two-dimensional grid topology. The final 
approach is based on a slab of cells. For this decomposition, nearest-neighbour communications 
can be minimized when mapped onto a pipeline topology (Figure 2). While the two-dimensional 
grid topology has a smaller communications overhead, the slab-partitioning approach requires 
less restructuring of the code. From the point of view of maintaining load balancing, the two- 
dimensional grid topology is more restrictive, since load balancing must now be performed in two 
dimensions. Also, as more PEs are added to the grid, it may become necessary to alter the entire 
distribution of PEs, thus altering the efficiency characteristics. Therefore, as a first step, the slab- 
partitioning approach was used in this study. A slab is defined as covering the entire xy-plane for a 
particular z-position. The data transfers between PEs consist of all xy-slab values represented at 
the PE overlap areas. 

The success of this approach depends on the even balancing of the computational effort 
amongst the PEs. Inefficiencies will result if some of the PEs remain idle during part of the 

PROBLEM DOMAIN 
I 

Figure 2. Partioning of problem domain over four PEs (shaded areas showing overlapped region) 
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computation phase. Since the computation time per cell is roughly constant, PEs will be left idle if 
the numbers of cells per PE are not identical. In some cases these idle times can be excessive. 

In the pipeline topology each PE has its own copy of the FLOW3D executable. Each PE is 
responsible for the computation of cell information in its assigned area of the domain. When 
necessary, data are transferred between neighbouring PEs. This is done in order to preserve as far 
as possible the data dependences present in the original scalar code. The major differences between 
the FLOW3D executables on the PEs lie in array declarations (which include the overlapped 
regions) and ‘DO loop’ ranges which are set to cover the nodes assigned to a given PE. 

The FLOW3D code has a variety of different linear equation solvers used to solve the 
discretized equations. These need to be rewritten to exploit the current parallel architecture. 
Attention is focused on three solvers: the PCG methods, LSOR and SIP. 

The PCG methods are largely explicit in nature; as a result there is minimal data transfer 
between PEs. The SIP algorithm is an example of an implicit solver and involves recurrences in the 
forward elimination and back-substitution stages. By re-ordering the indices over which the cells 
are updated, the algorithm can be made to perform in a pipeline fashion. This introduces an 
overhead in the form of a start-up time. The SIP and PCG algorithms have similar convergence 
properties in both their serial and parallel implementations. The LSOR algorithm uses the latest 
cell approximations and can be made to perform in a similar way in parallel. Unfortunately, large 
idle times are introduced while the necessary data values are computed on other PEs. An 
alternative is to use a ‘local’ PE LSOR algorithm. The LSOR algorithm uses updated values as 
they become available from assigned cells but uses old approximations for the overalapped cells. 
The latter effect causes an increase in the total number of iterations needed to achieve the same 
level of convergence. 

It was also necessary to introduce the evaluation of global scalar numbers. An example is the 
maximum residual required during a solution process. This was determined in two stages. Firstly, 
local evaluation of the scalar was carried out and all such numbers were then transferred up the 
pipeline to the master PE. In the second stage the scalar is determined for the whole data set and, if 
necessary, transferred back down the pipeline to all the slave PEs. 

Other alterations to the original code are mainly in the form of data exchanges of overlapped 
areas between neighbouring PEs. The exchanges are performed whenever there is an update of the 
overlapped areas. 

In this paper we discuss the performance of this code on up to 15 PEs. However, the code has 
been developed for operation with an arbitrary number of PEs. 

Since all computations are performed on the PEs, the host processor remains idle for a large 
portion of the total time. It can be put to good use by performing other tasks which will aid the 
CFD modeller. In the current implementation, for example, an interactive graphical display has 
been included. This is updated in parallel with the transputer calculations of the simulation, 
incurring only a small overhead in the process. 

The graphical tasks are not intended to be used for post-processing, but rather as a monitoring 
tool of the simulation. They allow a detailed interrogation of the flow field together with other 
related parameters. Some of the features currently provided in the 386 version include contour 
plots of a selected variable, e.g. pressure, temperature, etc., and vector plots of a given two- 
dimensional plane. For the purposes of monitoring convergence behaviour, there are graphs of 
mass residual and monitoring variables of a given control volume. In addition, relaxation 
parameters can be changed to modify the convergence behaviour. The direction of view and the 
selected two-dimensional plane can also be changed during the simulation. It is intended that this 
facility will be extended to include interactive modifications to boundary conditions and internally 
defined regions such as heat sources. 
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5. THE PHYSICAL PROBLEM 

The test case considered here is an enclosure fire. The fire compartment represents a closed office 
of dimensions 2.97 x 2.97 x 600 m3. Following accepted practices for the modelling of non- 
spreading fires,'-* the fire-meant to simulate a small heater or the early stages of a waste paper 
fire-was modelled as a volumetric heat source. It was centrally located on the floor at the back 
wall. For the purposes of this test case combustion was ignored. The heat source had dimensions 
of 054 x 0 2 7  x 0.4 m3 and a constant power output of 6 kW. The simulation was concerned with 
predicting the evolution of the office environment over the first 60 s. 

This simulation is not intended to represent state-of-the-art fire field modelling. Rather, it 
demonstrates the advantages in using a multitransputer environment to perform the calculations 
necessary to simulate complex fire scenarios. 

6. THE MATHEMATICAL PROBLEM 

The starting point of the analysis is the set of three-dimensional, partial differential equations that 
govern the phenomena of interest here. This set consists in general of the following equations: the 
continuity equation; the three momentum equations that govern the conservation of momentum 
per unit mass in each of the three space directions (the Navier-Stokes equations); the equation for 
conservation of energy; and the equations for a turbulence model, in this case the k--E model. The 
precise formulations of the differential equations describing the model will not be presented here 
since they may be found however, we shall consider them in their general vector 
form. 

All the equations can be expressed in a general formz6 as follows. 

The continuity equation 

The conservation of mass is expressed as 

aP 
at 
-+ div(p V) = S. 

The general @-equation 

The general source balance equation for @ is 

a 
- ( p @ )  + div(pV0 - rggrad@) = Sg .  

at 7 r 1 t I 
transient convection diffusion source 

Equations for the various quantities (e.g. velocity components, energy, pressure, etc.) differ 
primarily in the way in which the terms r and Sg are connected with other variables. They are 
derived from equation (2) simply by replacing 0, r and Sg with the appropriate expressions. 

The boundary conditions 

The initial temperature within the room was set to 24 "C. For all walls of the compartment the 
no-slip condition was used for velocities and both isothermal (at 24 "C) and adiabatic conditions 
for temperature. The usual 'wall  function^'^' were used to compute shear stresses and heat fluxes 
at the walls. 
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7. THE NUMERICAL EXPERIMENTS 

The volume of the fire enclosure was discretized using a Cartesian framework. For convenience 
the grid spacing was uniform in each space direction. A series of grids were employed ranging from 
10 x 10 x 15 (1500 cells) through 10 x 20 x 30, 20 x 10 x 30 and 20 x 20 x 15 (6000 cells) up to 
20 x 20 x 30 (12 O00 cells). These grids were selected for convenience, since this allowed the model 
to be implemented comfortably on five TRAMS. A further grid consisting of 20 x 20 x 60 (24 OOO) 
cells was also used; the execution of this problem was restricted to 15 TRAMS. 

The number of sweeps used within a given time step was set to a maximum of 25. Tests revealed 
that setting this number to 50 had very little effect on the overall solution. Convergence is assumed 
within a given time step if either the maximum number of sweeps is reached or the mass source 
residual falls below 1 x low4. It is worth noting here that converged solutions obtained from the 
serial and parallel codes display no significant differences. The hybrid differencing scheme is used 
throughout and the Stone method is used to solve the momentum and enthalpy equations. The 
pressure correction equation was solved using the ICCG method and the turbulence quantities 
were solved using the LSOR method. This corresponds to the default selection of solvers as 
recommended by the FLOW3D developers. Experience has shown these solvers to be efficient and 
robust for most applications. They were not selected on the basis of demonstrating peak 
efficiencies in parallel. The fully implicit backward differencing scheme was used for the 
discretization of time. Finally, the simulation was run for a total of 60 time steps, where each time 
step represented 1 s. 

8. RESULTS AND DISCUSSION 

Before discussing the findings of the numerical experiments, it is appropriate to briefly discuss the 
evolution of the room environment as predicted by the numerical model. The heat source creates a 
buoyancy-driven flow with large-scale turbulent motion which controls the diffusion of 
momentum. The non-uniform buoyancy forces not only drive this flow but also increase the 
turbulent mixing in the rising plume and inhibit it in hot stratified layers. 

Within 5 s the rising plume above the heat source impinges on the ceiling, creating a jet of hot 
gases which travels along the length of the room. This results in vigorous turbulent and a 
thickening of the hot layer. In order to feed the rising thermal plume, the heat source entrains 
cooler ambient air at floor level. As a result a large recirculation current is set up within the room. 
Within 25 s the ceiling jet encounters the far wall. As the simulation progresses, the hot ceiling 
layer thickens and there is a further increase in temperature. After 60 s a multilayered thermal 
stratification has developed within the room (Figure 3). 

Results from the numerical experiments concerning run times, speed-ups and efficiencies are 
summarized in Table I. Run times refer to the elapsed wall clock time required to perform the 
simulation calculations. Initial set-up and screen 1/0 times, while small in relation to the time 
involved in performing the calculations, are not included in these figures. In all but the 24 000-cell 
case, quoted speed-ups refer to the ratio of run times on a single PE to the respective multiple-PE 
case. For the purposes of comparing the serial and parallel FLOW3D implementations, the serial 
times quoted refer to the performance of the solvers in their original form. The simulation 
involving 24 OOO cells could not be performed on a single PE because of memory limitations. In 
this case the run time was estimated to be simply twice the time required to perform the 12 000-cell 
simulation on a single PE. In this way the quoted speed-up represents a minimum expected value. 
The efficiency is simply a percentage expression which represents the speed-up ratio divided by the 
number of PEs implemented. 
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Figure 3. Vertical centre plane depicting velocity vectors and temperature (K) contours after 60 s 

Figures 4 and 5 depict speed-up and wall-clock timesrfor the 12 000-cell (20 x 20 x 30 geometry) 
simulation utilizing up to 15 PEs. Also indicated in Figure 4 (dotted line) is the ideal linear speed- 
up curve. It is clear from this figure that as the number of PEs involved in the solution procedure 
increases while the number of cells remains constant, the efficiency of the system deteriorates. This 
is primarily due to a reduction in the proportion of computation to communication times. As 
more PEs are utilized, the time spent by each in performing the calculations is reduced while the 
time spent on communications remains constant. In addition, the parallel LSOR algorithm incurs 
a penalty in the form of an increase in the total number of iterations needed to achieve 
convergence. This is likely to become significant as additional PEs are included. 



FIRE FIELD MODEL IN PARALLEL COMPUTING 183 

Table I. Results of fire simulation numerical experiments performed on 
multiple transputers 

Number Wall clock Efficiency 
Grid size of PEs time (h) Speed-up (%) 

1 

5 

1 

5 

1 

5 

1 

5 

1 

5 

10 

15 

1 

15 

4.13 

1.34 

18.94 

5.64 

18.76 

5.44 

19.32 

6.06 

49.22 

11.61 

6.22 

4.42 

98.43* 

8.3 1 

- - 

3.1 62 

- - 

3.36 67 

- - 

3.45 69 

- - 

3-19 64 

- - 

4.24 85 

7.91 79 

11.14 14 

- - 

1 1 k *  79* 

*Indicates minimum estimate. 

Despite these difficulties, speed-up factors range from 4.3 on five PEs (85% efficiency) to 11.1 on 
15 PEs (74% efficiency). In terms of run times, this means that the 12 000-node fire simulation 
which requires in excess of 49 h to complete on a single PE can be performed in under 4.5 h using 
15 PEs (see Figure 5). 

The efficiency obtained from a particular PE array is dependent on the number of com- 
putational cells involved in the simulation. Figure 6 shows that a five-PE system can deliver 
efficiencies varying from 62% (3.1 speed-up) through 69% (3.45 speed-up) up to 85% (4.3 speed- 
up) by changing the problem size from 1500 through 6000 to 12 000 cells respectively. On doubling 
the number of cells to 24 OOO (20 x 20 x 60), the efficiency of the 15-PE system increases from 74% 
to an estimated minimum of 79%. Therefore, to achieve the maximum practical efficiency, it is 
essential to solve the largest problem that can be accommodated within the P E s  memory. 
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Figure 4. Speed-up factors for 20 x 20 x 30 problem utilizing up to 15 transputers (ideal speed-up shown as dotted line) 
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Figure 5. Wall clock times for 20 x 20 x 30 grid utilizing up to 15 transputers 

These results suggest that while keeping the problem size fixed, a point will eventually be 
reached where no further gain may be expected by adding additional PEs. However, the onset of 
this cut-off point can be forestalled by increasing the problem size. 

It is also apparent that for a given problem size the efficiency is dependent on the manner 
in which the cells are distributed within the solution domain. This is illustrated by the solution 
of the 6000-cell problem using five PEs. Three cell distributions were considered, 10 x 20 x 30, 
20x 10x30 and 2 0 x 2 0 ~ 1 5 ,  resulting in efficiencies of 67%, 69% and 64% respectively. 
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Figure 7. Differences in CPU time between various distributions of 6000 cells 

Table I reveals that the 20 x 10 x 30 configuration proved to be the fastest in both serial and 
parallel cases. The 20 x 20 x 15 case is the most inefficient, with the parallel and serial implementa- 
tions running 11.2% and 3.1% slower than their respective fastest counterparts (Figure 7). 

However, there was little difference between the 20 x 10 x 30 and the 10 x 20 x 30 cases, less than 
1% in scalar and 3.5% in parallel (Figure 7). The relatively small difference between these parallel 
cases is expected, because the primary overhead in each case-that of data transfers between 
PEs-is identical, since the number of cells in the xy-slabs are the same. This also means that the 
same number of calculations per xy-slab are performed, resulting in similar computation times for 
both parallel and scalar comparisons. 
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The marked differences observed between the 20 x 10 x 30 and 20 x 20 x 15 configurations can 
be explained in a similar manner. For the parallel case the data transfers between PEs are not 
identical. The first configuration involves 20 x 10 data elements while the second involves 20 x 20. 
Hence there is a greater communication overhead associated with the 20 x 20 x 15 case. This is 
coupled with the fact that algorithms which solve in an xy-slab fashion will work more effectively 
on a 20 x 10 rather than a 20 x 20 slab. 

9. FUTURE DEVELOPMENTS 

The development of the transputer (and parallel FORTRAN) has released the power of 
inexpensive parallel computing to computationally demanding applications such as fire simu- 
lations. Ironically, it is also the transputer which is limiting its further development. Delivering 
only 0.4 Mflops, hundreds of T800-20 transputers are required to achieve ‘supercomputer’ 
performance. For example, the 64 h aircraft cabin fire simulation would require 112 trasnputers 
(working at 80% efficiency) in order to complete the simulation in 1 h. However, if each PE could 
achieve 10 Mflops, only five would be required. 

This performance level is currently being pursued with a new-generation TRAM which 
incorporates both a T800 transputer and an Intel i860 microprocessor. The i860, capable of 
performing vector operations, has a peak performance of 80Mflops. The T800 is used for 
communication purposes while the i860 performs the compute-intensive calculations. Use of the 
i860 will mean that, with the exception of inserting vector calls, minimum alterations to the 
parallel version of FLOW3D will be necessary. Our early experiences with the i860 reveal that the 
20 x 20 x 30 case when run on a single i860 required under 3.6 h. of processing. This compares with 
a time of 4.42 h when run on 15 transputers in parallel. 

The next-generation transputer-known as the T9000 and due for release in 1991-also offers 
the possibility of enhanced performance. This is expected to be of the order of a 10-fold 
improvement in processing speed and communication rates. 

10. CONCLUSIONS 

The pipeline TRAM architecture allows for the efficient solution of ‘large’ CFD problems. In order 
to achieve maximum performance from a given array of PEs, it is essential that they be configured 
with sufficient memory to allow the solution of massive problems involving hundreds of 
thousands of computational cells. The memory issue becomes critical when simulating two-phase 
phenomena such as fire-sprinkler interaction. These compute-intensive simulations involve 
nearly twice as many variables and hence will involve twice as much memory. In addition, it is 
desirable to orientate the geometry of the problem such that the direction containing the 
maximum number of cells is conicident with the partition direction. This must be coupled with a 
good balance of computation amongst PEs to achieve maximum efficiency. 

On fire field models the technique has achieved efficiencies of 85%. Performed on a 15-PE 
system, run times for fire simulations involving transient, three-dimensional, turbulent, buoyant 
flows on a mesh of 24 000 computational cells have been reduced from more than 4 days to 8 h. It 
is expected that parallel/vector PEs will aid this development further. 

ACKNOWLEDGEMENTS 

The authors are indebted to AEA Technology Harwell for making available the source code of 
FLOW3D and to the U.K. Civil Aviation Authority and the SERC for funding. They also wish to 
acknowledge the contributions of Stephen Johnson, Mark Cross and Peter Chow. 



FIRE FIELD MODEL IN PARALLEL COMPUTING 187 

REFERENCES 

1. E. R. Galea, ‘On the field modelling approach to the simulation ofenclosure fires’, J .  Fire Protect. Eng., 1,ll-22 (1989). 
2. E. R. Galea and N. C. Markatos, ‘Modelling of aircraft cabin fires’, Fire Safety Science Proc. 2nd f n f .  Symp., 

Hemisphere, Washington DC, 1989, pp. 801-810. 
3. K. A. Pericleous, D. R. E. Worthington and G. Cox, ‘The field modelling of fire in an air-supported structure’, 2nd fnt. 

Symp. on Fire Safety Science, Tokyo, Hemisphere, Washington DC, January 1988, pp. 871-880. 
4. S. Kumar, N. Hoffmann and G. Cox, ‘Some validation of Jasmine for fires in hospital wards’, in Numerical Simulation 

of Fluid Flow and HeatlMass Transfer Processes, Springer, Berlin, 1986, p. 159. 
5. R. Waters, ‘Air and smoke movement within a large enclosure’, in Numerical Simulation of Fluid Flow and HeatlMass 

Transfer Process, Springer, Berlin, 1986, pp. 135-147. 
6. S. Simcox, N. S. Wilkes and I. P. Jones, ‘Fire at Kings Cross Underground Station, 18th November 1987; numerical 

simulation of the buoyant flow and heat transfer’, U.K. Atomic Energy Aufhoriry Harwell Report AERE-G 4677,1988. 
7. E. R. Galea and N. C. Markatos, ‘The modelling and computer simulation of fire development in aircraft’, Int. J .  Heat 

Mass Transfer, 34, 181-197 (1991). 
8. N. A. Hoffmann, E. R. Galea and N. C. Markatos, ‘Transient Two-phase fire-sprinkler simulation’, IASTED Int. Conf: 

on Modeling, Sirnulation and Optimisation, Montreal, May 1990. 
9. J. R. Kightley and I. P. Jones, ‘A comparison of conjugate gradient preconditionings for three-dimensional problems 

on a CRAY-1’, Comput. Phys. Commun., 37, 205-214 (1985). 
10. J. R. Kightley and C. P. Thompson, ‘On the performance of some rapid elliptic solvers on a vector processor’, SIAM J .  

Sci. Stat. Comput., 8, 701-714 (1987). 
11. H. A. Van der Vorst, ‘The performance of FORTRAN implementations for preconditioned conjugate gradients on 

vector computers’, Parallel Comput., 3,49-58 (1986). 
12. C. S. Ierotheou, C. W. Richards and M. Cross, ‘Vectorization of the SIMPLE solution procedure for CFD problems- 

Part I: A basic assessment’, Appl. Math. Modell., 13, 524-529 (1989). 
13. C. S. Ierotheou, C. W. Richards and M. Cross, ‘Vectorization of the SIMPLE solution procedure for CFD problems- 

Part 11: The impact of using a multigrid method’, Appl. Math. Modell., 13, 530-536 (1989). 
14. C. S. Ierotheou, ‘The simulation of fluid flow processes using vector processors’, Ph.D. Thesis, Thames Polytechnic, 

London, 1990. 
15. IMS T800 Architecture. Technical Note 6, Inmos Ltd., Bristol, January 1988. 
16. Parallel FORTRAN User Guide, 3L Ltd., Livingstone, 1990. 
17. A. D. Burns and N. S. Wilkes, ‘A finite-difference method for the computation of fluid flows in complex three 

18. M. Cross, S. Johnson and P. Chow, ‘Mapping enthalpy-based solidification algorithms onto vector and parallel 

19. S. Johnson, M. Cross and P. Leggett, ‘Casting simulation on highly parallel computer architectures’, Proc. Int. Conf: on 

20. S. Johnson and M. Cross, ‘Mapping CFD algorithm onto fine grained parallel architecture’, Appl. Math. Modell., 

21. C. M. Rhie and W. L. Chow, ‘Numerical study ofthe turbulent flow past an airfoil with trailing edge separation’, AIAA 

22. J. P, Van Doormaal and G. D. Raithby, ‘Enhancements of the SIMPLE method for predicting incompressible fluid 

23. R. A. Issa, ‘Solution of the implicitly discretised fluid flow equations by operator-splitting’, J. Comput. Phys., 62,4(M5 

24. N. C. Markatos, M. R. Malin and G. Cox, ‘Mathematical modelling of buoyancy induced smoke in enclosures’, Int. J .  

25. N. A. Hoffmann, ‘Computer simulation of fire-sprinkler interaction’, Ph.D. Thesis, Thames Polytechnic, London, 1990. 
26. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980. 
27. S. V. Patankar and D. B. Spalding, ‘A calculation procedure for heat, mass and momentum transfer in three- 

dimensional geometries’, U.K. Atomic Energy Authority Hanvell Report AERE-R 12342, 1987. 

architectures’, Appl. Math. Modell., 13, 702-709 (1989). 

Modelling of Casting, Welding and Advanced SolidiJcation Processes, Davos, September 1990. 

in press. 

J., 21, 1525-1532 (1983). 

flows’, Numer. Heat Transfer, 7 ,  147-163 (1984). 

(1985). 

Heat Mass Transfer, 25, 63-75 (1982). 

dimensional parabolic flows’, Znt. J .  Heat Mass Transfer, 15, 1787-1806 (1972). 




